What is SSL and TLS?

Buy SSL Certificate

SSL certificates starting at $29.99/yr! UC certificates starting at $59.99/yr! Wildcard certificates starting at $199.95/yr! Save 10% for 2 years, 20% for 3+ years!

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographic protocols that provide communication security over the Internet. TLS and SSL encrypt the segments of network connections above the Transport Layer, using asymmetric cryptography for key exchange, symmetric encryption for privacy, and message authentication codes for message integrity.

Several versions of the protocols are in widespread use in applications such as web browsing, electronic mail, Internet faxing, instant messaging and voice-over-IP (VoIP).

TLS is an IETF standards track protocol, last updated in RFC 5246, and is based on the earlier SSL specifications developed by Netscape Communications.

The TLS protocol allows client-server applications to communicate across a network in a way designed to prevent eavesdropping and tampering.

Since most protocols can be used either with or without TLS (or SSL) it is necessary to indicate to the server whether the client is making a TLS connection or not. There are two main ways of achieving this, one option is to use a different port number for TLS connections (for example port 443 for HTTPS). The other is to use the regular port number and have the client request that the server switch the connection to TLS using a protocol specific mechanism (for example STARTTLS for mail and news protocols).

Once the client and server have decided to use TLS they negotiate a stateful connection by using a handshaking procedure. During this handshake, the client and server agree on various parameters used to establish the connection’s security.

  • The handshake begins when a client connects to a TLS-enabled server requesting a secure connection and presents a list of supported cipher suites (ciphers and hash functions).
  • From this list, the server picks the strongest cipher and hash function that it also supports and notifies the client of the decision.
  • The server sends back its identification in the form of a digital certificate. The certificate usually contains the server name, the trusted certificate authority (CA) and the server’s public encryption key.
  • The client may contact the server that issued the certificate (the trusted CA as above) and confirm the validity of the certificate before proceeding.
  • In order to generate the session keys used for the secure connection, the client encrypts a random number with the server’s public key and sends the result to the server. Only the server should be able to decrypt it, with its private key.
  • From the random number, both parties generate key material for encryption and decryption.

This concludes the handshake and begins the secured connection, which is encrypted and decrypted with the key material until the connection closes.

If any one of the above steps fails, the TLS handshake fails and the connection is not created.

 

source: http://en.wikipedia.org/wiki/Secure_Sockets_Layer